
zCOBOL

System Programmer’s Guide
v1.5.00

Automated Software Tools Corporation.

zc390 Translator
COBOL Language Verb Macros
COMPUTE Statement Example
zCOBOL Target Source Language Generation Macros
ZC390LIB Runtime Library
Base Free Code Generation
zCOBOL EXEC CICS Support
zCOBOL Data Types
Command Line options for zCOBOL Compiler
zCOBOL File Types
Trademarks
Credits

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

zc390 Translator

The zc390 translator is a java regular expression based parser which reads COBOL source program
and generates HLASM compatible mainframe assembler source program in one pass. Each
recognized COBOL verb starts a new assembler macro call statement with all the parameters up to
the next verb, period, or paragraph label passed as positional parameters. Periods generate a
separate macro call to PERIOD to generate end to all the structures in the previous sentence.
Paragraph and section labels generate call to LABEL with the name and type of label to generate.
All hyphens in names are translated to underscores for HLASM compatibility.

COBOL Language Verb Macros

All the macros for the COBOL language verbs and section headings are stored in the macro library
z390\zcobol. These macros parse the parameters, validate them for any syntax errors, and issue calls
to generation macros in separate directory as described below. For example, the zcobol\IF.MAC
macro generates multiple calls to the generation macros GEN_COMP, GEN_BC GEN_B, and
GEN_LABEL. There are no language specific code generation macros in the zCOBOL directory so
it is shared across multiple target language environments. All the macros are written in structured
form using the z390 ZSTRMAC SPE structured programming extensions such as AIF, AELSEIF,
AELSE, AEND, AWHILE, etc. As a result there are no explicit AGO or AIF labels in these macros.

COMPUTE Statement Example

The COBOL compute statement now supported in v1.5.00d is a good example to study to
understand how the zCOBOL compiler works. The steps followed to compile the following MOVE
and COMPUTE statements are as follows:

 77 FLT-SRT USAGE FLOAT-SHORT OCCURS 2.
........
MOVE 1.1 TO FLT-SRT(2)
COMPUTE FLT-SRT(2) = FLT-SRT(2)+2.2

1 zc390 translator generates the following 2 zCOBOL verb macro call statements
MOVE 1.1,'TO',FLT_SRT,"(',2,')'
COMPUTE FLT_SRT,'(',2,')',=,FLT_SRT,'(",2,')',+,2.2

2 The MOVE macro uses shared copybook routine GET_FIELD_PARM to parse the two fields
for MOVE and store resulting field name and symbol table index. For the literal 1.1 the index is
0, for the subscripted field, the name is set to explicit register reference including length
0ffset(length,register) and the code is generated to set the register to address of the subscripted
field.

3 The MOVE macro next issues call to GEN_MOVE with the source and target field names and
system table indexes.

4 The GEN_MOVE macro checks the type of each field and generates appropriate code to move
value from source to target field. In this case it uses LARL to set register to address of DFP
short value of 1.1 in literal table and then generates MVC to move the literal to the target
subscripted field.

5 The COMPUTE uses GET_FIELD_PARM to obtain name and index of target field and then
extracts parms in expression following the = and then calls ZC_CALC macro to generate code
for expression and store result in specified target field. This macro can be used by IF and other
verb macros to calculate expression for loop etc.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

http://www.z390.org/z390_ZSTRMAC_Structured_Macro_Support.htm
http://www.z390.org/z390_ZSTRMAC_Structured_Macro_Support.htm

6 The ZC_CALC macro parsers the expression parameters into Backus Normal Form using two
stacks. One stack has the operators in expression and the other has the field parm index
pointers. Following the rules of precedence, the operators and associated parameter pointers are
removed from the stacks and stored sequentially in an operation table containing the operators,
2 operands, and the target field for each operation. Temporary storage fields are represented
using negative indexes instead of position and a table of temporary fields created along with
their type is maintained. A queue of free temporary fields is maintained and once a temporary
field has been used in an operation, that temporary field is on the free queue for reuse rather
than allocating a new temporary storage field. Once the expression has been parsed and all the
operation table entries have been generated, the last target field is replaced with the result field
passed to ZC_CALC and then the operation table is scanned and the generation macros for
each operation are called to generate code to perform the operation. Just prior to generating
code for an operation, the two input parameter types are used to determine the required type of
result to minimize any loss of precision during the calculations. A call to GEN_MOVE is made
to move the first operand field to the target field prior to performing add, subtract, etc. on the
target field for operation. If the first operand is the same as the target field, the move can be
omitted but that is not always possible to determine in the case of subscripting and indexing
where different variables may just happen to have the same value. The called generation
macros GEN_ADD, GEN_SUB, GEN_MPY, and GEN_DIV check the field types and perform
the necessary conversion when types do not match.

The generated zCOBOL HLASM assembler code for these 2 COBOL statements is as follows:

0000DC (1/99)652 * MOVE 1.1 TO FLT-SRT(2)
0000DC (1/100)653 MOVE 1.1,TO,FLT_SRT,'(',2,')'
0000DC C02900000004 000004 (29/28)660+ IILF R2,(2-1)*4 (LIT-1)*LEN
0000E2 4122D058 000220 (29/29)661+ LA R2,FLT_SRT(R2)
0000E6 C0100000006D 0001C0 (30/193)664+ LARL R1,=ED'1.1'
0000EC D20320001000 (30/194)665+ MVC 0(4,R2),0(R1)
0000F2 (1/101)668 * COMPUTE FLT-SRT(2) = FLT-SRT(2)+2.2
0000F2 (1/102)669 COMPUTE FLT_SRT,'(',2,')',=,FLT_SRT,'(',2,')',+,2.2
0000F2 C0F900000004 000004 (29/28)677+ IILF R15,(2-1)*4 (LIT-1)*LEN
0000F8 41FFD058 000220 (29/29)678+ LA R15,FLT_SRT(R15)
0000FC C02900000004 000004 (29/28)688+ IILF R2,(2-1)*4 (LIT-1)*LEN
000102 4122D058 000220 (29/29)689+ LA R2,FLT_SRT(R2)
000106 D203F0002000 (30/64)694+ MVC 0(4,R15),0(R2)
00010C 780F0000 (34/132)697+ LE F0,0(R15)
000110 B3D40000 (34/133)698+ LDETR F0,F0,0
000114 C0E000000052 0001B8 (34/134)699+ LARL R14,=DD'2.2'
00011A 681E0000 (34/135)700+ LD F1,0(R14)
00011E B3D21000 (34/136)701+ ADTR F0,F0,F1
000122 B3D50000 (34/137)702+ LEDTR F0,0,F0,0
000126 700F0000 (34/138)703+ STE F0,0(R15)

See the results for this calculation in the regression test zcobol\test\TESTSIX1.CBL. Note that
using DFP the result is exactly 3.3 which is not the case when using HFP COMP-1 floating
point due to conversion to base 2 versus base 10. The zcobol\ZC_CALC.MAC macro is written
in ZSTRMAC structured conditional macro assembler consisting of about 850 lines of code
with no AGO statements.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

http://www.z390.org/z390_ZSTRMAC_Structured_Macro_Support.htm

zCOBOL Target Source Language Generation Macros

All the target source language generation macros called by the COBOL verb macros in
z390\zcobol are stored in the following directories by target language:

z390\zcobol\z390 Generate HLASM compatible mainframe assembler source program
z390\zcobol\java Generate J2SE java compatible source program
z390\zcobol\vce Generate MS Visual Express C compatible source program
z390\zcobol\i586 Generate HLA/MASM Intel assembler compatible source program

Current only the z390 HLASM compatible source generation macros are being fully developed
along with the required runtime support functions stored in the zcobol\z390\ZC390LIB.390
dynamically loaded runtime module. However the zCOBOL demos include a hello world COBOL
program which can be compiled and executed in each of the target environments form the same
zcobol\demo\HELLO.CBL source program. The following commands generate the corresponding
source language equivalent and executable:

Command Generated Source Code Target Generated Executable Code
ZC390CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.MLC/BAL zcobol\demo\HELLO.390 requires
z390 and J2SE on Windows/Linux

ZCJAVCLG
zcobol\demo\HELLO

zcobol\demo\HELLO.java zcobol\demo\HELLO.class requires
J2SE on Windows/Linux

ZCVCECLG
zcobol\demo\HELLO

zcobol\demo\HELLO.ccp zcobol\demo\HELLO.exe requires
MS VCE runtime on Windows

ZC586CLG
zcobol\demo\HELLO

zcobol\demo\HELLO.HLA/ASM zcobol\demo\HELLO.exe requires
HLA, MASM, and MS VCE runtime
on Windows

If you are interested in joining in the open source zCOBOL development effort in any of the 4 target
language environments or want to add another target language environment, join the zcobol
development email discussion group and make your interests known. Melvyn Maltz is currently
developing additional EXEC CICS support for zCOBOL programs.

ZC390LIB Runtime Library

The z390\zcobol\z390 code generation macro directory also contains all the source code and the
ZC390CVT.CPY copybook required to build the z390\linklib\ZC390LIB.390 runtime load module
which is dynamically loaded by all generated z390 zCOBOL programs. This module contains the
following components:

ZC390LIB.MLC Contains ZC390LIB CSECT and COPY ZC390CVT to include all
object modules following the CVT at the beginning

ZC390NUC.MLC Included module with system function routines such as CALL,
GOBACK, STOPRUN, PERFORM, and PMCHECK to check for end
of current performed paragraph or section

ABORT.MLC Contains module called to abort execution with reason code
ACCEPT.MLC Contains support for ACCEPT date, time, day of week
DISPLAY.MLC display any type field or literal
INSPECT.MLC Inspect field tallying, replacing, or transforming.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

http://tech.groups.yahoo.com/group/zcobol/
http://tech.groups.yahoo.com/group/zcobol/

The ZC390CVT.CPY copybook is used in every zCOBOL generated program to define the
DSECT addressed by register 9. The same copybook is also used in ZC390LIB.MLC to
generate the CVT at the beginning of the ZC390LIB.390 runtime load module with addresses of
all the entries followed by work areas used by the code generation macros.

Base Free Code Generation

The zCOBOL code generation macros in zcobol\z390 generate base free code for the procedure
division using relative instructions for both branch addressing and for literal addressing as
required. The only address constants generated in zCOBOL programs are for statically linked
CALL's to other zCOBOL or assembler programs. The only limit on the combined size of
working storage and the procedure division is 16 MB. In order to use relative addressing for
literals, all odd length literals are padded to even lengths. The LARL instruction is used to set
address of data field or literal field as required for use in following RX type instructions. To
address working storage and linkage section data fields, conventional base registers are
dynamically allocated as required for use in RX type instructions. Since R13 always points to the
beginning of working-storage, no dynamic base registers are required for access to data items in
the first 4k of working storage.

zCOBOL EXEC CICS Support

When the option CICS is specified on the command line for ZC390C, ZC390CL, or ZC390CLG,
then the zcobol\ZCOBOL. MAC global option &ZC_CICS is set on and the following changes in
code generation are made:

1 The CICS option will generate call to DFHEIENT to initialize CICS prior to executing user
code starting at the first program CSECT.

2 A DFHEISTG DSECT is generated at the beginning of working-storage instead of WSLOC
LOCTR and warnings are generated for any data VALUE clauses defined in working-storage
section.

zCOBOL Data Types

USAGE PICTURE Z390
Assembler
Type

Description

COMP S9(4) H 16 bit binary
COMP S9(9) F 32 bit binary
COMP S9(18) G 64 bit binary
COMP S9(39) Q 128 bit binary
FLOAT-HEX-7 COMP-1 EH HFP short 7 digits
FLOAT-HEX-15 COMP-2 DH HFP long - 15 digits
FLOAT-HEX-30 LH HFP extended - 30 digits
FLOAT-BINARY-7 EB BFP short 7 digits
FLOAT-BINARY-16 DB BFP long - 16 digits
FLOAT-BINARY-34 LB BFP extended - 34 digits
FLOAT-DECIMAL-7 FLOAT-SHORT EB DFP short 7 digits
FLOAT-DECIMAL-16 FLOAT-LONG DB DFP long - 16 digits
FLOAT-DECIMAL-34 FLOAT-EXTENDED LB DFP extended - 34 digits
COMP-3 S9(31) P (3) Packed decimal up to 31 digits with option EXTEND

S9(31) Z (3) Zoned Decimal up to 31 digits with option EXTEND
(uses PD support)

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

X X Characters
FLOAT-SHORT EH,EB,ED Use option FLOAT(HFP/BFP/DFP)
FLOAT-LOG DH,DB,DD Use option FLOAT(HFP/BFP/DFP)
FLOAT-EXTENDED LH,LB,LD Use option FLOAT(HFP/BFP/DFP)
POINTER
PROCEDUREPOINTER

A 31 bit binary

1 The zCOBOL option FLOAT(HEX/BINARY/DECIMAL) can be used to change the default from DECIMAL to
HEX or BINARY for the generic types FLOAT-SHORT, FLOAT-LONG, and FLOAT-EXTENDED.

2 COMP-3 packed and also zoned decimal are limited to 18 digits per COBOL standard unless option EXTEND is set
allowing up to 31 digits for both packed decimal and zoned decimal fields.z390 and zCOBOL options
include the following:

Command Line options for zCOBOL Compiler

To turn off an option that is on, prefix the option name with NO on command line or in OPT options
file.

Option Defa
ult

Description

@file NO Retrieve additional options from free form text file with default
suffix OPT. Options can be specified delimited by spaces on as many
lines as requires. All characters on a line following * are ignored as
comments. The @file option can be nested. The default path is the
program path.

CICS NO Parse COBOL EXEC CICS commands into z390 EXEC CICS
compatible macro calls and also rename working storage to
DFHEISTG.

COMMENT YES Generate MLC comments showing original COBOL statement
preceding each macro call statement.

EXTEND YES Support up to 31 digits for DISPLAY (Z) and COMP-3 (P) type data
items rather than limiting precision to ANSI 1985 standard of 18.

FLOAT
(DECIMAL)

YES Set type of floating point for usage FLOAT-SHORT, FLOAT-LONG,
and FLOAT-EXTENDED. The choices are FLOAT(HEX) for
Hexadecimal Floating Point (HFP) like COMP-1 and COMP-2,
FLOAT(BINARY) for Binary Floating Point (BFP), or the default
FLOAT(DECIMAL) for Decimal Floating Point (DFP).

R64 YES Generate 64 bit instructions for the 16 GPR registers where
appropriate. NOR64 restricts code generation to only use lower 32
bits of 16 GPR registers as required by z/VSE and some other
operating environments. (Note option TRUNC and NOR64 results in
use of DXR instead of DGR which is more efficient.)

TRACE NO Generate WTO display of paragraph name at entry to each new
paragraph in NO procedure division. This provides high level trace
as opposed to using the z390 TRACE(E) option which generates
instruction level trace.

TRUNC NO Truncate binary data types F, G, and H to specified number of digits
in PICTURE.

WARN YES Generate level 4 MNOTE warnings from zCOBOL macros

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

• Options are passed to the zCOBOL macro stage via CBL macro call with the options defined as
positional parameters

zCOBOL File Types

TYPE Format File Description File or Report Format Description
CBL ASCII COBOL source program 1-6 sequence #, 7 Comment if not

space, 8-11 area A, 12-72 area B
MLC ASCII Macro assembler source

program generated by phase 1
of the zCOBOL compiler
which uses zcobol.class regular
expression based parser in
z390.jar to read CBL source
file and create MLC source file
in one pass.

Macro call. for each COBOL statement
starting in area A and for each COBOL
verb found in area B. Working storage
data items are mapped to WS macro
call with level as first parameter. Each
macro call name is followed by
positional parameters found following
verb up to next verb or period. Periods
are mapped to PERIOD macro call.
Parameters of the form keyword(..) are
passed as single parameter. Other (and
) are passed as separate parameter in
quotes.

BAL ASCII HLASM compatible source
code generated by phase 2 of
the zCOBOL compiler when
using ZC390C or ZC390CLG
commands.

HLASM compatible source statements
generated by the zcobol+zcobol\z390
macros during expansion of the
generated MLC file.

JAVA ASCII J2SE Java compatible source
program file generated by
phase 2 of the zCOBOL
compiler when using ZCJAVC
or ZCJAVCLG commands.

Java source statements generated by
the zcobol+zcobol\java macros during
expansion of the generated MLC file.

CPP ASCII MS Visual Express C
compatible source program file
generated by phase 2 of the
zCOBOL compiler when using
ZCVCEC or ZCVCECLG
commands.

MS Visual Express C compatible
source statements generated by the
zcobol+zcobol\vce macros during
expansion of the generated MLC file.

HLA ASCII HLA/MASM compatible
source program file generated
by phase 2 of the zCOBOL
compiler when using ZC586C
or ZC586CLG commands.

HLA/MASM compatible source
statements generated by the
zcobol+zcobol\i586 macros during
expansion of the generated MLC file.

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

Trademarks

IBM, CICS, HLASM, MVS, OS/390, VSAM, z9, z10, and z/OS are registered trademarks of
International Business Machines Corporation

Credits

Author : Don Higgins
Formatting : Walter Petras
Z390 version :

Copyright 2009 Automated Software Tools Corporation.
This is part of z390 distributed under open source GPL License.

